Insights into thermophilic archaebacterial membrane stability from simplified models of lipid membranes.

نویسندگان

  • Charles H Davis
  • Huifen Nie
  • Nikolay V Dokholyan
چکیده

Lipid aggregation into fluid bilayers is an essential process for sustaining life. Simplified models of lipid structure, which allow for long time scales or large length scales not obtainable with all-atom simulations, have recently been developed and show promise for describing lipid dynamics in biological systems. Here, we describe two simplified models, a reduced-lipid model and a bola-lipid model for thermophilic bacterial membranes, developed for use with the rapid discrete molecular dynamics simulation method. In the reduced-lipid model, we represent the lipid chain by a series of three beads interacting through pairwise discrete potentials that model hydrophobic attractions between hydrocarbon tails in implicit solvent. Our phase diagram recapitulates those produced by continuous potential models with similar coarse-grained lipid representations. We also find that phase transition temperatures for our reduced-lipid model are dependent upon the flexibility of the lipid chain, giving an insight into archaebacterial membrane stability and prompting development of a bola-lipid model specific for archaebacteria lipids. With both the reduced-lipid and bola-lipid model, we find that the reduced flexibility inherent in archaebacteria lipids yields more stable bilayers as manifested by increased phase transition temperatures. The results of these studies provide a simulation methodology for lipid molecules in biological systems and show that discrete molecular dynamics is applicable to lipid aggregation and dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Archaebacterial lipid membranes as models to study the interaction of 10-N-nonyl acridine orange with phospholipids.

The dye 10-N-nonyl acridine orange (NAO) is used to label cardiolipin domains in mitochondria and bacteria. The present work represents the first study on the binding of NAO with archaebacterial lipid membranes. By combining absorption and fluorescence spectroscopy with fluorescence microscopy studies, we investigated the interaction of the dye with (a) authentic standards of archaebacterial ca...

متن کامل

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of archaebacterial lipids in lyophilized membranes dry mixed with 9-aminoacridine

A method of direct lipid analysis by MALDI mass spectrometry in intact membranes, without prior extraction/separation steps, is described. The purple membrane isolated from the extremely halophilic archaeon Halobacterium salinarum was selected as model membrane. Lyophilized purple membranes were grinded with 9-aminoacridine as dry matrix and the powder mixture crushed in a mechanical die press ...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid b...

متن کامل

Archaebacterial lipid models: stable liposomes from 1-alky1-2-phytanyl-sn-glycero-3-phosphocholines.

1-Alky1-2-phytanyl-sn-glycero-3-phosphocholines (HPhyPC: alkyl = n-C16H33; EPhyPC: alkyl = n-C20H41), which are artificial chimeric lipids between archaebacterial and ordinary glycerolipids, are prepared. Upon sonication in aqueous media, the lipids gave rise to stable unilamellar liposomes having diameter of 200-1,000 A and gel-to-liquid crystalline phase transition temperature of -11.1 degree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2007